Decoding Our Universe: ‘The Great Math Mystery’ [Video]

21st Century Wire – The closer we look at our holographic universe – the more we see Math. More specifically, its numbers and equations.

The presence of the Fibonacci sequence in nature – it’s the operating system of our world.

[youtube=https://youtu.be/jm7OBEz7JR0]

Fibonacci sequences

They are everywhere – in patterns of spirals seen in animal, plants, leaves, seeds and even in the expansion of the universe. Ditto with the Pi number sequence – found in various wave forms, and also in the cosmos. – SF Source 21st Century Wire


FibonacciWikipedia – The Fibonacci sequence is named after Italian mathematician Fibonacci. His 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been described earlier in Indian mathematics. By modern convention, the sequence begins either with F0 = 0 or with F1 = 1. The Liber Abaci began the sequence with F1 = 1.

Fibonacci numbers are closely related to Lucas numbers in that they are a complementary pair of Lucas sequences. They are intimately connected with the golden ratio; for example, the closest rational approximations to the ratio are 2/1, 3/2, 5/3, 8/5, … . Applications include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting parallel and distributed systems. They also appear in biological settings, such as branching in trees, phyllotaxis (the arrangement of leaves on a stem), the fruit sprouts of a pineapple, the flowering of an artichoke, an uncurling fern and the arrangement of a pine cone’s bracts.

Origins

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.[7][12] In the Sanskrit tradition of prosody, there was interest in enumerating all patterns of long (L) syllables that are 2 units of duration, and short (S) syllables that are 1 unit of duration. Counting the different patterns of L and S of a given duration results in the Fibonacci numbers: the number of patterns that are m short syllables long is the Fibonacci number Fm + 1.[8]

Susantha Goonatilake writes that the development of the Fibonacci sequence “is attributed in part to Pingala (200 BC), later being associated with Virahanka (c. 700 AD), Gopāla (c. 1135), and Hemachandra (c. 1150)”.[6] Parmanand Singh cites Pingala’s cryptic formula misrau cha (“the two are mixed”) and cites scholars who interpret it in context as saying that the cases for m beats (Fm+1) is obtained by adding a [S] to Fm cases and [L] to the Fm−1 cases. He dates Pingala before 450 BC.[13]

However, the clearest exposition of the series arises in the work of Virahanka (c. 700 AD), whose own work is lost, but is available in a quotation by Gopala (c. 1135):

Continue reading . . .

 

Please leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.