Checksum Discovered In DNA (The Mathematics Of DNA)

Cosmic Fingerprints

Imagine that someone gives you a mystery novel with an entire page ripped out.

And let’s suppose someone else comes up with a computer program that reconstructs the missing page, by assembling sentences and paragraphs lifted from other places in the book.

Imagine that this computer program does such a beautiful job that most people can’t tell the page was ever missing.

DNA does that.

Barbara McClintock won Nobel Prize posthumously

In the 1940′s, the eminent scientist Barbara McClintock damaged parts of the DNA in corn maize. To her amazement, the plants could reconstruct the damaged section. They did so by copying other parts of the DNA strand, then pasting them into the damaged area.

This discovery was so radical at the time, hardly anyone believed her reports. (40 years later she won the Nobel Prize for this work.)

And we still wonder: How does a tiny cell possibly know how to do…. that???

A French HIV researcher and computer scientist has now found part of the answer. Hint: The instructions in DNA are not only linguistic, they’re beautifully mathematical. There is an Evolutionary Matrix that governs the structure of DNA.

Computers use something called a “checksum” to detect data errors. It turns out DNA uses checksums too. But DNA’s checksum is not only able to detect missing data; sometimes it can even calculate what’s missing. Here’s how it works.

In English, the letter E appears 12.7% of the time. The letter Z appears 0.7% of the time. The other letters fall somewhere in between. So it’s possible to detect data errors in English just by counting letters.

In DNA, some letters also appear a lot more often (like E in English) and some much less often. But… unlike English, how often each letters appears in DNA is controlled by an exact mathematical formula that is hidden within the genetic code table.

When cells replicate, they count the total number of letters in the DNA strand of the daughter cell. If the letter counts don’t match certain exact ratios, the cell knows that an error has been made. So it abandons the operation and kills the new cell.

Failure of this checksum mechanism causes birth defects and cancer.

Barbara McClintock
Jean-Claude Perez discovered an evolutionary mathematical matrix in DNA, based on the Golden Ratio 1.618

Dr. Jean-Claude Perez started counting letters in DNA. He discovered that these ratios are highly mathematical and based on “Phi”, the Golden Ratio 1.618. This is a very special number, sort of like Pi. Perez’ discovery was published in the scientific journal Interdisciplinary Sciences / Computational Life Sciences in September 2010.

Jean-Claude Perez discovered an evolutionary mathematical matrix in DNA, based on the Golden Ratio 1.618

Before I tell you about it, allow me to explain just a little bit about the genetic code.

DNA has four symbols, T, C, A and G. These symbols are grouped into letters made from combinations of 3 symbols, called triplets. There are 4x4x4=64 possible combinations.

Continue reading